Ongelmaa voidaan lähestyä kahdesta suunnasta: ensimmäinen ratkaisu on käyttää pidempää ikkunaa, jolloin kaytettävissä olevien taajuuskomponenttien määräkin kasvaa. Joissain tilanteissa pituutta ei kuitenkaan voida määrättömästi kasvattaa esim. seuraavista syistä:
- Mittaus on hidasta tai kallista. Esimerkiksi laitoksen systeemibiologian ryhmä tarkastelee eri organismien geenien aktiivisuutta ns. microarraymenetelmällä. Vaikka mittausten hinta onkin laskenut rajusti viime vuosina, saattaa jokainen aikasarjan näyte maksaa edelleenkin tuhansia euroja. Tutkittaessa esimerkiksi eri geenien toiminnan jaksollisuutta solusyklin aikana täytyy jaksollisuuden eli taajuuksien analyysin toimia luotettavasti hyvinkin pienellä näytemäärällä.
- Sovellus ei salli viivettä spektrin estimoinnissa. Esimerkiksi moottorin tai työkoneen toiminnan optimaalisuuden tarkastelu saattaa vaatia jaksollisuuden tarkastelua vaikkapa käynnin tasaisuuden arvioinnissa. Jotta saatua tietoa voitaisiin käyttää tehokkaasti säädön apuna, täytyy viiveen olla melko lyhyt.
- Laskenta-aikaa on vain rajallinen määrä. Reaaliaikaisissa sovelluksissa, joissa laskentakapasiteettia ei voida lisätä rajatta, täytyy ottaa huomioon menetelmän laskennallinen kompleksisuus. Fourier-muunnoksen laskenta on kompleksisuudeltaan O(n2), eli pituuden tuplaus nostaa laskennan määrän nelinkertaiseksi. Vaikka käytettäisiinkin alempana mainittua nollien lisäystä, voidaan näistä aiheutuva pituuden lisäys optimoida osin pois laskennasta.
Sivuvaikutuksena nollien lisäämisellä on spektriin ilmestyvät komponentit jota ei todellisuudessa ole. Luennolla todettiin, että yksittäisen taajuuden tapauksessa Fourier-muunnos näyttääkin ikkunan Fourier-muunnoksen siirrettynä oikeaan paikkaan. Käytettävät ikkunat ovat samoja kuin suodinsuunnittelun yhteydessäkin, ja niiden avulla voidaan poistaa spektrin sivukeiloja (lisää ikkunoita harrisin artikkelista). Sivukeilojen poistumisen sivuvaikutuksena pääkeila kuitenkin leviää, joten ikkunan valinta on aina kompromissi samalla lailla kuin suodinsuunnittelussakin. Ikkunoiden vertailun helpottamiseksi niille voidaan laskea kuvaavia tunnuslukuja, joita esitellään kappaleissa 5.2.1-5.2.4.
Varsinaisen prujun asian lisäksi demottiin oskilloskooppia, jossa on myös spektriestimointi-toiminto. Havaittiin, että käytetyssä mallissa on mahdollista valita joko suorakulmainen ikkuna tai Hanning-ikkuna. Lisäksi nähtiin, että tietokoneen äänikortin epäideaalisuudet löytyivät spektristä vain Hanning-ikkunan avulla; ei pelkällä suorakulmaisella ikkunalla. Riittävän kovalla äänenvoimakkuudella tietokone nimittäin leikkaa sinisignaalin huiput tasaisiksi. Tämän säröefektin Fourier-sarja olisi mahdollista laskea analyyttisestikin, ja sen avulla voidaan ääni saada kuulostamaan voimakkaammalta keinotekoisesti---temppu jota käytetään esimerkiksi tekemään mainoksista kovaäänisempiä.